ORDINANCE

CITY OF NEW ORLEANS

CITY HALL: _November 2, 2006 CALENDAR NO. _26,294

NO. _____ MAYOR COUNCIL SERIES

BY: COUNCILMEMBERS THOMAS, HEAD, LEWIS

AN ORDINANCE authorizing the City of New Orleans to amend the Building Code (11625 MCS Uniform Building Code) establishing standards for the City of New Orleans by creating a new Chapter entitled "Sustainability", for new residences to be built so that New Orleans residents and members of the construction industry can utilize advanced construction techniques which result in durable, high-quality homes that are certifiable and encouraged by the City of New Orleans.

Chapter – **SUSTAINABILITY**

Section I - Housing

SECTION A: STANDARD OF SUSTAINABILITY ("SOS")

SECTION 1. Statement of Purpose

WHEREAS in 2005, hundreds of thousands of homes within New Orleans were so severely damaged by Katrina, floods and the failures of the levees that New Orleans has lost more than 50% of its pre-Katrina population.

WHEREAS for many years in the future new home construction will be a multi-billion dollar industry in New Orleans.

WHEREAS many of the homes in New Orleans were subjected to catastrophic failure mechanisms, e.g. floods and category-3 hurricanes, seldom experienced by most newly constructed U.S. homes.

WHEREAS all homes in New Orleans are habitually subjected to failure mechanisms uncommon to most of the US but common here including: unpredictable rain-forest precipitation, subsidence, Formosan termites, and ambient dew-points higher than the middle of the human-comfort range.

WHEREAS the building code of New Orleans has not been updated or customized to address local climatic or soil conditions.

WHEREAS local climatic and soil conditions can present economic opportunities to lower construction costs and raise performance of buildings.

WHEREAS the local building industry has not been retrained or reoriented to most effectively respond to either the old or the new challenges.

WHEREAS some homes that are built better than code can be expected to provide lower operating costs, are safer, more comfortable OR more durable.

WHEREAS some builders believe that they can construct homes that exceed code and provide all of: lower operating costs, more safety, more comfort AND more durability; and some of these builders would like to a process leading to a certification that truly helps the prospective homeowner value and appreciate the benefits of such homes balanced against their higher, initial, construction cost.

WHEREAS the various certifications for homes currently available to builders and homeowners to differentiate these homes do not provide a complete package to assure these benefits and, in particular, do not provide adequate durability whether to the catastrophic challenges to the home or the habitual challenges.

WHEREAS new homes built in Europe and Japan are often mortgaged over a 100-year timeline because such homes are built to last much longer than that, while new homes in the U.S. often fail before their initial, 30-year mortgage is paid.

WHEREAS homeowners can no longer buy standard homeowners' insurance to cover protection from flooding, mold or poor indoor-air quality.

WHEREAS just following Katrina, many thousands of New Orleanians were stranded for most of a week or more in their homes without water, food-refrigeration or airconditioning and each of these deficiencies lead to extreme hardship and, in some cases, death.

WHEREAS one group of New Orleans-based engineers and architects have developed a home-construction approach that addresses all of these issues.

WHEREAS many large corporations are gearing up at this time to provide goods and services to New Orleans' construction industry, so better choices now can generate many quality jobs in the future.

WHEREAS newly-constructed homes can cost more than 80% of the disposable income earned by a low-income worker during 30 years of employment.

WHEREAS New Orleans can lead the nation in this field.

WHEREAS since the SOS construction standard will drastically lower energy use in a home, residential energy use is the largest energy sector of the U.S. economy, the U.S. is the nation with the 3rd largest population in the world and uses about 25% of all energy used on the planet, wide-scale adoption of this standard can significantly retard the growth of global warming and it predicted effects: rising sea level and increased frequency and strength of major storms.

Therefore:

THE CITY COUNCIL DOES HEREBY ORDANE: There is a defined need to greatly increase the useful life expectancy of housing structures in the City of New Orleans and to eliminate or substantially reduce the negative physical impacts of climatic conditions and environmental factors or elements which lead to the internal and exterior corrosion of dwellings and the quality of the living space therein.

1 SECTION 2. Building Code Certification

2 That the building code of the City of New Orleans will certify that a home is3 "Sustainable".

1 SECTION 3. Adoption of a Functional Standard

2 The City of New Orleans does hereby adopt a *functional* Standard of Sustainability as it
3 relates to Housing. Be it so:

4 "Sustainability is functionally achieved when a dwelling is designed, built and 5 commissioned to collect, transfer, store and ultimately convert naturally occurring 6 environmental phenomena into a safe, healthy and comfortable indoor living 7 environment, within the prescribed human comfort zone for at least 30 generations. 1 **SECTION 4. Definitions:** 2 1. Collection of naturally occurring renewable resources includes but is not 3 limited to air and water, as well as, energy from atmospheric phenomena like 4 air pressures, wind, rain, and sunshine, and geotechnical resources like 5 geothermal, spring and river flows. The collection can be for immediate use 6 or for use at another time during the year. Renewable energy includes, but is

7		not limited to, hydro-electric, photovoltaic solar, solar thermal, geothermal,
8		biomass, land-fill gas and wind energy.
9	2.	Storage can be on-site involving energy storage systems such as but not
10		limited to thermal mass, pressure, springs, rotational momentum devices,
11		electric batteries, cisterns, heated walls, charge potential, temperature and/or
12		ground coupling or can be off-site utilizing the community's electricity grid.
13	3.	Conversion mechanisms can involve but are not limited to: electricity to
14		motion, light or heat, and heat and motion to dehumidification.
15	4.	Transfer mechanisms in a home can involve active and passive heat and light
16		flows needed to enhance comfort and building durability.
17	5.	A Safe home is not susceptible to known catastrophic-failure mechanisms.
18		a. It doesn't burn down (4-hour fire rating; 4-hour fire rating is defined in
19		accordance with ASTM E119-00a.)
20		b. It doesn't blow away (envelope is capable of withstanding 200 mph
21		winds)
22		i. provides a safe-room in case of direct hits of a hurricane or
23		tornado to meet FEMA 320; (Taking Shelter from the Storm:
24		requiring the shelter to resist a 15 lb, 2"x4" missile propelled
25		by 250 mph ground-speed tornado,)
26		ii. can withstand the loss of a complete window during a
27		hurricane without loosing a roof, and
28		iii. the external walls meet the FEMA 320 projectile-resistance
29		standard applied at 200 mph,

30	c. The building can withstand flooding without compromising its
31	durability or the health, safety or comfort of its inhabitants. For
32	example, currently proposed solutions to this problem include: siting
33	its lowest living space 30 feet above sea level, providing a dynamic
34	lifting system in case of a flood or floatation.
35	6. A Healthy home is not susceptible to known, health-endangering, habitual
36	failure mechanisms
37	a. It is free of pests and pesticides alike
38	b. It does not harbor, grow or accumulate
39	i. dust mites
40	ii. bacteria
41	iii. Legionnaire's protozoa
42	iv. mold
43	v. pollen
44	c. Does not emit or accumulate
45	i. Formaldehyde
46	ii. Urea
47	iii. Ozone
48	iv. Carbon Monoxide
49	d. Ventilation or "fresh air" flows exceed ASHRAE 62.2 Standards by
50	100%.
51	e. Relative Humidity is maintained within 45-55%.

52	f.	HEPA filtration of (intake) ventilation air is required. A HEPA filter
53		must remove at least 99.97% of all airborne particles by particle count
54		at a size of 0.3 microns (which is one-300th the diameter of a human
55		hair.)
56	g.	The ventilation system is capable of positively pressurizing the home
57		to between 2 and 5 Pascals. A Pascal is as unit of pressure, equal to
58		approximately one hundred-thousandth of an atmosphere (which is
59		about 14.7 lbs per square inch).
60	h.	Vacuum cleaning systems exhaust to outside
61	i.	Exhaust fans are controlled by timers
62	7. A Cor	nfortable home means
63	a.	Temperature and humidity are maintained within the prescribed human
64		comfort zone (68-78° (Fahrenheit), 45-55% (Relative Humidity).
65	b.	Artificial lighting is unnecessary during most day-time use,
66	c.	Artificial lighting is more than adequate for optimal productivity at
67		any time, and
68	d.	Occupants will have independent control of lighting, temperature and
69		airflows on a room-by-room basis.
70	e.	Hot and cold potable water are available in more than adequate supply.
71		Potable Water meets the NSF/ANSI 61 standard. Adequate supply of
72		water means 100 gallons per day per person. A home is assumed to
73		have a number of persons equal to one more than the number of its
74		bedrooms. Hot water is defined as potable water heated to 135

75	degrees F. More than adequate supply of hot water is defined to be 75
76	gals per day per residence.
77	8. A Durable home is not susceptible to known building-endangering
78	catastrophic or habitual, failure mechanisms
79	a. Subsidence will not threaten its structure, upright stature (within 5
80	degrees of exactly level), integrity, or alignment. E.g., no more
81	distortions of homes which lead to windows that will not close or
82	components that do not provide for weather-tight exteriors.
83	b. Exterior walls must be designed to withstand rain-forest precipitation:
84	i.e., ten inches of rain in any month. For example, current building
85	science recommends either
86	i. pressure-equalized shedding walls or
87	ii. high-moisture capacity external mass walls
88	c. To protect against moisture accumulations in the roof or structures that
89	support the roof, all impediments to heat or moisture flow shall be
90	installed to allow moisture to flow from bottom to top and then to
91	outside.
92	d. Envelope building materials and energy distribution systems are rated
93	for centuries of normal use without significant degradation.
94	e. The building's components are not susceptible to mold, wood-rotting
95	fungus or subterranean termites.
96	f. The building's components and design provide for multiple layers of
97	component failure without resulting in ultimate failure of the building.

98	For example, a minor roof leak is not a problem if it never presents
99	itself to the homeowner and does not result in degradation of the
100	structure.
101	g. So that it can withstand gross moisture loading without failure, the
102	structure shall have ten times the moisture-holding capacity of wood-
103	framed construction compliant with 2003 IRC
104	h. During the life of every home, some parts need replacement. A home
105	will not be considered durable, unless the projected average annual
106	cost of maintenance and replacement of its constituent parts does not
107	exceed 0.5% of the original construction cost measured in current
108	dollars.
109	9. A Well-Constructed home has been built so that
110	a. All of the above considerations and goals were integrated into its
111	design by a team of licensed, certified or accredited, building-design
112	professionals having local expertise in architecture, energy efficiency,
113	engineering and building science. A building-design professional is
114	considered to have local expertise if he has actively practiced his
115	profession for at least five years within 50 miles of the site of
116	construction. The design considerations of a well constructed home
117	include but are not limited to
118	i. Orienting the windows and the home
119	ii. Sizing the HVAC system

121	iv. Engineering the foundation / floatation system
122	v. Engineering the roof's design and support system
123	vi. Specifying flashing details
124	vii. The design benefits from the work of an engineering
125	professional who integrates the needs of the building to the
126	resources available in the climate and soils.
127	b. Building materials are chosen to meet the previously mentioned goals.
128	c. Workers and sub-contractors are provided training as needed to meet
129	the goals of the design
130	d. During and at the end of construction, the home is checked for
131	i. prescriptive requirements which include but are not limited
132	to
133	1. choice and placement of insulation
134	2. windows
135	3. HVAC equipment
136	4. Structural connections
137	ii. performance requirements include but are not limited to
138	measuring the
139	1. Leakiness of the home
140	2. Leakiness of the HVAC distribution system
141	3. Solar gain of the windows
142	4. Defective heat and moisture flows with thermal
143	imaging

144	e. Commissioning, which means oversight of construction, is sufficient
145	to reach the above goals and timed to be unpredictable by the
146	construction team.
147	f. Commissioning is provided by a third-party, certified or licensed,
148	commissioning agent, (as defined by the USGBC - LEED 2.1), who is
149	not part of the construction team.
150	10. A home has Passive Survivability if during a week that the home is
151	disconnected from all community utilities,
152	a. Food refrigeration is not compromised. Food refrigeration includes
153	both a refrigerator and freezer. The freezer must be at least 3 cubic
154	feet. A freezer is capable to protect the food within it if it can sustain
155	temperature at or below 0 degrees F. The refrigerator must be at least
156	15 cubic feet. A refrigerator is deemed capable to protect its food if it
157	can sustain temperature at or below 35 degrees F.
158	b. Comfort is not degraded, and
159	c. An adequate supply of potable water is more than in storage.
160	11. Just like a typical home, a Zero Energy Home (ZEH) is connected to, and
161	uses energy from, the local electric utility. But unlike typical homes, at times
162	the ZEH makes enough power to send some back to the utility. Annually, a
163	ZEH produces enough energy to offset the amount purchased from the utility-
164	resulting in a net-zero annual energy bill.
165	12. A <i>Sustainable</i> home is

- 166a. "...functionally achieved when a dwelling can collect, transfer, store167and ultimately convert naturally occurring environmental phenomena168into a safe, healthy and comfortable indoor living environment, within169the prescribed human comfort zone, "
- 170 b. A Zero Energy Home,
- 171 c. provides **Passive Survivability**,
- d. is **Well-Constructed** and
- e. Designed to be **Durable** for 30 generations (about a thousand years).
 - 1 **SECTION 5.** Responsibility to Provide Documentation
 - 2 The responsibility to provide documentation that this standard has been reached shall fall
 - 3 upon the developer and/or builder. All sustainable homes shall also conform to the
 - 4 traditional permitting and inspection requirements of the City of New Orleans building
 - 5 code prior to issuance of a certificate of occupancy.

ADOPTED BY THE COUNCIL of the CITY of NEW ORLEANS _____

PRESIDENT of COUNCIL

DELIVERED TO THE MAYOR ON _____

APPROVED: ______

MAYOR

RETURNED BY THE MAYOR ON _____ AT _____

CLERK of COUNCIL

YEAS:

NAYS:

ABSENT: